

Inland Waters

ISSN: 2044-2041 (Print) 2044-205X (Online) Journal homepage: http://www.tandfonline.com/loi/tinw20

Trace organic compounds in rivers, streams, and wastewater in southeastern Alberta, Canada

Morgan Basiuk, Rachel A. Brown, Darlene Cartwright, Ryan Davison & Peter M. Wallis

To cite this article: Morgan Basiuk, Rachel A. Brown, Darlene Cartwright, Ryan Davison & Peter M. Wallis (2017) Trace organic compounds in rivers, streams, and wastewater in southeastern Alberta, Canada, Inland Waters, 7:3, 283-296, DOI: <u>10.1080/20442041.2017.1329908</u>

To link to this article: <u>http://dx.doi.org/10.1080/20442041.2017.1329908</u>

View supplementary material 🖸

Published online: 08 Sep 2017.

Submit your article to this journal oxdot T

View related articles 🗹

View Crossmark data 🗹

Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tinw20

Trace organic compounds in rivers, streams, and wastewater in southeastern Alberta, Canada

Morgan Basiuk,^a Rachel A. Brown,^b Darlene Cartwright,^c Ryan Davison,^d and Peter M. Wallis^e

^aDepartment of Medicine, University of Alberta, Edmonton, Canada; ^bSchool of Food and Nutritional Sciences, Brescia University College, London, Canada; ^cEnvironmental Utilities, City of Medicine Hat, Medicine Hat, Canada; ^dDavison Environmental Consulting, Medicine Hat, Canada; ^eHyperion Research Ltd., Medicine Hat, Canada

ABSTRACT

We selected 14 anthropogenic organic compounds representing major classes of potential contaminants for analysis to determine their occurrence in the South Saskatchewan River and its tributaries near irrigated farmland and the only urban center in southeast Alberta, Canada. Agriculture and urban runoff and discharges seem to have little impact on the quality of surface water based on samples taken above and below Medicine Hat/Redcliff in the South Saskatchewan River and local tributaries. Samples of river water, tributary water, and raw and treated wastewater taken over a period of 3 years allowed an estimation of the impact of trace organic compounds from urban and agricultural activities on water quality. Of the 14 compounds investigated, 10 were detected in concentrations above the detection limit in at least one surface water sample and 9 at concentrations above the detection limit in sewage samples. The wastewater treatment plant removed indicator compounds to varying degrees, and the volume of treated effluent discharge was <1% of the river, even during the lowest flow conditions, thereby minimizing potential impact. Discharge in the river and tributaries varied by an order of magnitude over the period of study, including 2 major flood events in the South Saskatchewan River. Potential health or environmental effects were difficult to evaluate from a regulatory perspective because few guidelines are available for reference.

Introduction

Pharmaceutical products, endocrine disrupting compounds, and chemicals used in agriculture and industry have been widely detected in various waters worldwide (Sosiak and Hebben 2005). Thousands of anthropogenic chemicals find their way into surface waters, largely secondary to human activities (Snyder et al. 2008), but few are regulated or monitored. These activities include municipal wastewater treatment plant (WWTP) effluent, industrial manufacturing processes, animal feeding operations, and current prescription practices (Snyder et al. 2008). Soluble compounds are subject to modification and degradation by both biotic and abiotic processes, and hydrophobic compounds tend to associate with particulate matter where they may remain suspended or become incorporated with sediments (Anderson et al. 2012). Aquatic organisms are subject to both processes, as are human and animal consumers. By mimicking endogenous hormones, endocrine disrupting compounds may alter development, reproduction, and **KEYWORDS**

Antibiotic; endocrine disruptor; herbicide; industrial chemicals; pharmaceuticals; wastewater: water

Taylor & Francis

Check for updates

neural and immune functions (NIH, HHS 2010). This effect is well established in wildlife (Lambert and Skelly 2016).

Monitoring of chemical presence is limited by the high cost of analysis, the need for large sample volumes with extensive processing, and the absence of water quality guidelines for many chemicals, even if they have known toxicity or other harmful effects. Because of the great need for more efficient analytical methods to identify and monitor chemical inputs into rivers and streams, an inexpensive screening tool would be invaluable, and monitoring a select number of indicator compounds is a cost and time effective option (Wunderlin et al. 2014). One option is the enzyme-linked immunosorbent assay (ELISA), which offers faster sample preparation, requires smaller sample volumes with less sample preparation, often has lower detection limits, and is cost effective (Dohnal et al. 2013, Fauzan et al. 2016). The objective of this study was to use ELISA-based kits as a screening tool to estimate the occurrence of representative anthropomorphic compounds in surface waters influenced by

CONTACT Peter M. Wallis 🖾 hyperion@telusplanet.net

Supplemental data for this article can be accessed here.

^{© 2017} International Society of Limnology (SIL)

urban and agricultural runoff. The City of Medicine Hat, Alberta, is the only significant source of wastewater discharge in the study area, so raw and treated sewage effluents were included. Here, water resources are scarce, stream inputs are few and seasonal, and multiple upstream agricultural, industrial, and municipal users may influence water quality.

Study site

The vicinity of Medicine Hat is downstream of extensive irrigated farmland and ranching operations, and there is only one major river (the South Saskatchewan) and 2 small streams. The South Saskatchewan River is formed by the confluence of the Bow and Oldman rivers about 75 km northwest of Medicine Hat. Calgary (about 300 km northwest) and Lethbridge (about 120 km west) are the only major centers upstream of Medicine Hat, and there is a large agricultural area irrigated by the Saint Mary River Irrigation District immediately to the southwest of the city (upstream). The Eastern Irrigation District on the north side of the Bow River services the agricultural area surrounding the City of Brooks. Although some potential exists for irrigation return water to reach the river(s) during the growing season, most irrigators use low pressure drop head technology that minimizes wastage (Alberta Government 2014), and runoff potential is low, aided by low precipitation and high evapotranspiration (AMEC 2009). Snowmelt runoff from agricultural areas has the potential to transport contaminants, dependant on prairie spring snow cover. Oil and gas development in the region is extensive, but little is located near watercourses, and its water consumption is only a small fraction of that consumed by agriculture (about 1%; AMEC 2009).

The City of Medicine Hat uses the river for municipal water withdrawals, as does the adjacent Town of Redcliff, constituting about 14% of water use but about 75% of flow returns to the river after extensive wastewater treatment, storm runoff, or groundwater infiltration (data from AMEC 2009). Medicine Hat treats its own raw sewage and that of the Town of Redcliff in the same facility, initially by skimming and settling. The Medicine Hat Wastewater Treatment Plant process starts at the headworks where screens and grit removal chambers remove large objects and larger inorganic material. From there the effluent moves into the primary clarifiers where settling and skimming occur. Chemically enhanced primary treatment occurs at both the headworks and primary locations to coagulate solids in the effluent for easier removal. The floating material skimmed off is removed and taken to the landfill. The settled sludge goes to the sludge thickener, then secondary dewatering, then to the landfill.

The effluent from the primary clarifiers proceeds to the trickling filters where aerobic bacteria remove soluble and suspended nutrients as well as some nitrogen. From the trickling filters the effluent goes into the solids contact channels where more flocculation occurs and aluminum sulphate is added to aid in phosphorus removal. Next, the effluent flows into the secondary clarifiers where settling and skimming occur similar to the primary clarifiers. After the secondary clarifiers, the effluent undergoes ultraviolet (UV) disinfection treatment (about 30 mJ/cm²) and then flows through the lagoon system before being discharged by diffusers into the South Saskatchewan River. The WWTP can handle up to 30 ML/day, which is typically <1% of the discharge in the river, even at the lowest seasonal discharge volumes.

River and creek discharge

Only 2 tributaries, Seven Persons and Ross creeks, flow to the South Saskatchewan River in the Medicine Hat area. They join just before flowing into the river and after flowing through Medicine Hat (Fig. 1). Each tributary receives smaller tributaries that tend to be ephemeral in their headwaters, including Bullshead Creek. In the local tributaries, runoff will typically peak in the spring sometime between April and June, depending on the melting snowpack or the later rainfall events in the headwaters. Creek flows in subsequent months comprise mainly irrigation water releases in the Seven Persons Creek and base flows from groundwater sources in the Ross Creek. High water in the South Saskatchewan River occurs in June each year, originating as snowmelt from the mountains 300 km to the west. In both 2013 and 2014, persistent rainstorms in the headwaters of the Bow and Oldman rivers quickly melted large amounts of alpine snow, augmenting normal river flow and resulting in 100+ year flood conditions downstream. In 2013, discharge in the South Saskatchewan River increased from about 600 m³/s to more than 5000 m³/s during 3 weeks in June. This event happened again in 2014, with flows increasing from 300 m^3 /s to more than 3000 m^3 /s in the latter part of June. The floods were really pulses of water that came and went over a period of a few days and only affected the South Saskatchewan River. They did not result in any substantial increase in local runoff because all of the precipitation fell far to the west, but water backed up in the lowest reaches of Seven Persons and Ross creeks in urban areas, including all downstream sampling sites. Extensive flushing scouring, and recharge of riparian areas took place along the river's entire length, including industrial, municipal, and agricultural areas. The WWTP remained above water, but there was substantial flooding in the urban areas of Medicine Hat and adjacent agricultural bottomland.

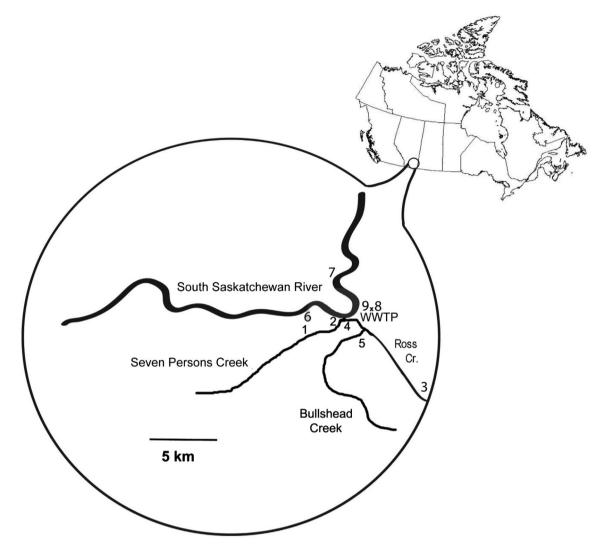


Figure 1. Study area location in Alberta, Canada, identifying the South Saskatchewan River and Seven Persons, Bullshead, and Ross creeks. Numbers 1–7 specify locations of sample sites.

Choice of compounds to investigate

We selected chemicals commonly found in agricultural, industrial, or municipal effluent to represent important classes of contaminants such as human antibiotics or hormones (Table 1). The rationale behind these choices was that these potential contaminants could represent major classes of compounds. Industrial source chemicals were represented by alkylphenol, benzo(a)pyrene, and polybrominated diphenyl ether (PBDE). Avermectins, sulfamethazine, and sulfamethoxazole are widely used human and animal antibiotics, and triclosan is a common antimicrobial compound added to soap and other personal care products. Hormones were represented by estrogen, ethinylestradiol, and testosterone and herbicides by 2,4-dichlorophenoxyacetic acid (2,4-D) and glyphosate. Microcystin is an algal toxin dangerous to livestock and can cause taste and odor issues in drinking water. Caffeine was included as a marker of human sewage.

Methods

Sampling

Sampling occurred approximately twice per month at 9 sites in and around Medicine Hat (Table 2, Fig. 1) during 3 consecutive summers. Sampling also took place in late December 2012 and again in 2013 to capture winter low-flow conditions. The upstream and downstream sampling sites chosen on Seven Persons and Ross creeks and on the South Saskatchewan River were approximately 5 km apart and bracket the region of potential municipal influence. Bullshead Creek drains an upland region of cattle ranching, and the headwaters drain the slopes on the west side of Cypress Hills Provincial Park. Samples were taken using amber bottles with Teflon caps after rinsing the dipper and bottles 3 times with source water and then stored at 2-6 °C. Particulate matter was given time to settle for at least 1 h (samples were not filtered). Analysis began on

Table 1. List of contaminants analyzed in this study and a brief, general description of each.

Contaminant	Description
Alkylphenol	A class of organic compounds; nonylphenol ethoxylates are potent endocrine disrupting compounds used as a surfactant, pesticide ingredient, lubricating oil additive, and for curing of epoxy resins, etc. (Sosiak and Hebben 2005)
Avermectins	A class of macrocyclic lactones extremely active against helminths and arthropods; ivermectin treats parasitic infections in humans and animals; abamectin is used for crop protection (Chung et al. 1999)
Benzo(a)pyrene	An important polycyclic aromatic hydrocarbon; identified in air and water emitted from various combustion and pyrolysis sources (NHM-RC, NRMMC 2011)
Caffeine	Acts as a stimulant in the body; a useful marker of human waste contamination in water (Sosiak and Hebben 2005)
2,4-D	2,4-Dichlorophenoxyacetic acid is a systemic herbicide used for the control of broad-leaf and aquatic weeds (NHMRC, NRMMC 2011)
Estrogens	Endogenous female hormones including estrone (E1), estradiol (E2) and estriol (E3) (Sosiak and Hebben 2005, Chen et al. 2006). Animal wastes can contribute hormones to surface runoff (Tyler et al. 2009). Both sexes of fish can be affected (EI-Alfy and Schlenk 2002) as well as other aquatic organisms
Ethinylestradiol	Synthetic estrogen (ovulation inhibitor) found in birth control pills (Sosiak and Hebben 2005)
Glyphosate	A non-selective herbicide used to control weeds in agriculture industry, forestry, and the aguatic environment (NHMRC, NRMMC 2011)
Microcystin	One of the 2 main types of toxins produced by Cyanobacteria; possible carcinogen and may cause liver damage (Fischer et al. 2001, NHMRC, NRMMC 2011)
PBDE	Polybrominated diphenyl ethers are chemicals used as flame retardants in furniture, mattresses, and electronics etc.; potentially harmful to neonates (being phased out in Canada)
Sulfamethazine	A sulfonamide antibiotic ("sulfa drug"); used more frequently than all other sulfonamides in veterinary medicine; used to promote weight gain in food animals (Sosiak and Hebben 2005)
Sulfamethoxazole	A sulfonamide antibiotic ("sulfa drug"); treats bacterial and protozoan infections; often administered with trimethoprim in humans (Sosiak and Hebben 2005)
Testosterone	Endogenous male androgen (Sosiak and Hebben 2005)
Triclosan	An antimicrobial ingredient added to many consumer products (clothing, kitchenware, furniture, toys, soaps, toothpastes, cosmetics etc.; USFDA 2010)

Table 2. Locations for sample collection in the South Saskatchewan River, the Seven Persons, Bullshead, and Ross creeks, and the Medicine Hat Wastewater Treatment Plant (WWTP), with the corresponding longitude and latitude.

Sample Location	Sample Site	Longitude	Latitude
1. Seven Persons Creek upstream	Desert Blume	49°59′31.5″	110°44′0.6″
2. Seven Persons Creek downstream	Industrial Ave	50°01′44.8″	110°38′46.1″
3. Ross Creek upstream	Bridge	50°00′16.9″	110°35′6.5″
4. Ross Creek downstream	Industrial Ave	50°01′38.7″	110°38′17.8″
5. Bullshead Creek	Golf Course	49°59′22.6″	110°37′22.4″
6. South Saskatchewan River upstream – Water treatment plant	Trans-Canada Hwy	50°05′33.8″	110°39′50.9″
7. South Saskatchewan River downstream	11th Ave; CFL	50°02′28.6″	110°43′13.8″
8. Medicine Hat WWTP raw	Headwater	50°02′58.3″	110°38′19.6″
9. Medicine Hat WWTP treated	Effluent	50°03′07.4″	110°38′36.3″

the day of sampling, and all tests were completed within 96 h of sample collection. Raw wastewater samples were composites collected over a 24 h period.

Analysis

Measurements of analytes took place using ELISA procedures according to the manufacturer's instructions (Abraxis LLC, Warminster, PA). The sample volumes used for ELISA method ranged from 50 to 100 μ L depending on the kit used. Absorbance was read within 15 min using an ELx808 Absorbance Microplate Reader (BioTek Instruments, Inc.) set at 405 nm. Standard curve linear regression R^2 values below 0.95 or internal control standards deviating beyond the specified kit limits resulted in data elimination. Results were considered to be below or above the detection limit when the absorbance value was less than or exceeded the lowest or highest concentration standard. If analysis of the internal standard exceeded the specified range, the data from that analytical batch were eliminated.

Validation of data

Internal standards were provided with all kits except benzo(a)pyrene, avermectins, and PBDE and were used to validate each analytical batch of samples. Replicate analyses of benzo(a)pyrene (Supelco) and avermectins (AccuStandard) were prepared using stock solutions diluted with 10 Megohm pure water (Thermo-Fisher) to concentrations that fell within the range of the kit standards. PBDE was dropped early in the study because no samples tested above the method detection limit. In addition to internal standard validation, 6 duplicate samples were submitted to ALS laboratories in Calgary for analysis of a wide range of trace organic compounds including most of the analytes used in this study. Alkylphenols, caffeine, sulfamethazine, sulfamethoxazole, testosterone, estrogens, and glyphosate were analyzed using LC/MS (USEPA Method EPA 549.2). Samples for caffeine, estrogens (EPA 549.2 MODIFIED), testosterone (EPA 549.2 MODIFIED), and glyphosate (MOE E3415 MODIFIED) were filtered and aliquoted prior to analysis. Benzo(a)pyrene and 2,4-D were analyzed via GC/MS (USEPA Method

Results

Analysis

The analytical results were summarized (Table 3) by reporting the median and maximum values detected that fell within the working range of the standards. All data, including those above and below the standard range, are reported in the supplemental tables. The median values for estrogens, ethinylestradiol, 2,4-D, alkylphenol, PBDE, and sulfamethazine were always below the concentration of the lowest standard in the kits at all sites except for untreated wastewater. The same was true for sulfamethoxazole in the streams, and its concentration in the South Saskatchewan River was always close to the lower limit. Concentrations of avermectins, benzo(a)pyrene, caffeine, glyphosate, microcystins, testosterone, and triclosan at all sites were nearly always found to be within their analytical range. Analyte concentrations were similar in the tributaries and South Saskatchewan River with the exception of glyphosate, which tended to be lower at both sampling points in the river. Both treated and untreated wastewater always contained quantities of all of these analytes within or above the limits of the standards.

Validation of data

Agreement of the analytical results with the acceptable range of the internal standards (when provided) was generally good, although the results exceeded the confidence

Table 3. Summary of analytical results, concentrations are in (ng/L). The range of standards in (ng/L) is given below analyte heading. u/s = upstream; d/s = downstream.

Analyte		Seven Persons Cr. u/s	Seven Persons Cr. d/s	Ross Cr. u/s	Ross Cr. d/s	Bullshead Cr.	South Sask. River u/s	South Sask. River d/s	WWTP raw	WWTP treated
Estrogens	n	13	13	11	11	8	12	13	13	12
50-3000	Median	<50	<50	<50	<50	<50	<50	<50	527	<50
	Max conc	64	116	<50	<50	73	57	<50	1007	174
Ethinylestradiol	n	13	13	11	11	8	12	13	13	13
50-3000	Median	<50	<50	<50	<50	<50	<50	<50	<50	<50
	Max conc	<50	<50	<50	<50	<50	361	270	<50	<50
2,4 D	n	14	14	12	12	10	13	13	14	13
2000-8000	Median	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000
	Max conc	<2000	3010	<2000	3848	2928	5001	<2000	3749	2213
Alkylphenol	n	12	12	11	10	8	12	12	12	11
5000-500 000	Median	<5000	<5000	<5000	<5000	<5000	<5000	<5000	13 504	<5000
	Max conc	<5000	<5000	<5000	<5000	<5000	<5000	<5000	95 981	5145
Avermectins	n	14	14	12	12	9	13	14	14	13
185-15000	Median	1978	2104	2226	2089	1624	2120	2088	2293	1495
	Max conc	5540	5909	5656	5797	3221	4205	4528	4824	5315
Benzo(a)pyrene	n	12	11	11	10	9	12	13	13	11
250-5000	Median	1565	1490	1466	1460	1137	1171	1479	2053	1278
	Max conc	562	644	551	562	523	568	598	747	514
Caffeine	n	12	12	12	10	10	12	12	12	12
175-5000	Median	<175	224	176	256	268	<175	189	15 982	962
	Max conc	649	3844	448	2550	4158	565	605	>15000	2203
Glyphosate	n	13	13	12	11	10	13	14	14	12
75-4000	Median	161	209	109	305	172	<75	79	1952	433
	Max conc	304	1392	305	2578	1516	141	212	>4000	1380
Microcystins	n	14	14	12	12	10	13	14	14	13
150-5000	Median	<150	<150	<150	150	170	<150	<150	<150	<150
	Max conc	166	640	<150	1004	824	<150	275	465	<150
PBDE	n	6	6	6	4	2	6	6	6	6
40–4000	Median	<40	<40	<40	<40	<40	<40	<40	<40	<40
	Max conc	<40	<40	<40	<40	<40	<40	<40	41	<40
Sulfamethazine	n	13	13	12	11	10	13	14	14	13
50–5000	Median	<50	<50	<50	<50	<50	<50	<50	<50	<50
	Max conc	51	<50	<50	<50	<50	75	58	150	<50
Sulfamethoxazole	n	13	13	12	11	10	13	13	13	12
25–1000	Median	<25	<25	<25	<25	26	30	27	1112	519
	Max conc	181	53	104	48	43	82	68	>1000	>1000
Testosterone	n	14	14	12	12	10	13	14	14	13
8–2000	Median	9	8	12	7	8	<8	<8	1731	10
	Max conc	26	15	20	20	18	14	37	>2000	23
Triclosan	n	13	13	12	11	8	12	13	14	13
50-5000	Median	93	93	135	105	148	117	122	3955	495
	Max conc	546	352	268	378	163	226	500	>5000	2418

intervals provided with the standards by <10% on 5 of 24 occasions, and these data were included. The concentration of benzo(a)pyrene prepared in-house was 2500 ng/L, and analysis of 7 replicates resulted in a mean (mean [standard deviation]) detection of 2605 (404) ng/L. Similarly, analysis of 6 avermectins replicate standards prepared at 2000 ng/L resulted in a mean of 2009 (201) ng/L.

Validation of results by inter-lab comparison (Table 4) was only partially successful because of the frequent occurrence of analytical values outside the effective range of the methods used, usually below the detection limit. Concentrations of hormones (estrogens, ethinylestradiol, and testosterone) generally agreed in the 6 duplicate samples, although the LC/GC/MS values for raw wastewater were sometimes unexpectedly low. ELISA results for benzo(a)pyrene deviated considerably from LC/GC/MS data, possibly because of cross-reactivity of the antibodies with closely related molecules. ALS laboratories reported the concentrations for total nonylphenol ethoxylates, whereas the Abraxis method tested for nonylphenol, octylphenol, and both of their ethoxylates. There was reasonable agreement between the 2 laboratories for the antibiotics sulfamethethoxazole and sulfamethazine, although the concentrations were notably low in river and creek samples as found by Shelver et al. (2008). Microcystin and caffeine concentrations were usually in accord, although the concentrations in wastewater were in excess of the maximum limit by ELISA for caffeine.

Discussion

Surface waters

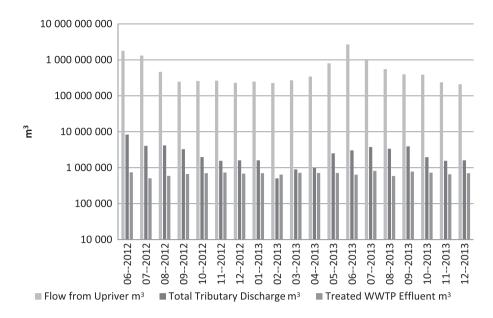
The concentrations of hormones (estrogens, ethinylestradiol, and testosterone) measured in streams and the South Saskatchewan River were always below their detection limits (Table 3; supplemental figures). The same was true for alkylphenol and PBDE but not for benzo(a)pyrene, which was almost always above 1000 ng/L in the river and streams. Three of the validation samples analyzed by ALS were taken from the South Saskatchewan River at the same site and date, and no concentrations above their detection of 5 ng/L were found. The high numbers found by ELISA analysis were probably caused by cross-reactions with other polycyclic aromatic hydrocarbons of unknown origin, so our measurements are most likely overestimates. Filtering the samples might have brought our results down to the ALS range, but because we were interested in the total exposure to aquatic organisms we analyzed unfiltered samples. Low PBDE concentrations suggest low risk for aquatic mammals and top predators such as bald eagles, as found by Dornbos et al. (2015) in the

plant.		blant.		;				5		5			5	
	Detec	Detection limit	WTP .	WTP treated	~	WTP raw	WM	WWTP raw	~	WTP raw		WWTP raw	WT	WTP raw
	ng/L	ng/L	28 E	28 Dec 12	28	28 Dec 12	06 /	06 Aug 13	.90	06 Aug 13	30 C	30 Dec 13	30 E	30 Dec 13
Analyte	ALS	This study	ALS	This study	ALS	This study	ALS	This study	ALS	This study	ALS	This study	ALS	This study
Estrogens	10	50-3000	<10	<50	<10	<50	<10	681	<10	<50	<10	741	<10	<50
Ethinylestradiol	50	50-3000	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
2.4 D	500-5000	2000-80 000	<500	<2000	<500	2338	<5000	<2000	<500	<2000	<500	<2000	<500	<2000
Alkylphenol	2000	5000-500000	<2000	<5000	<2000	<5000	6200	16 140	<2000	<5000	5500	95981	<2000	<5000
Benzo(a)pyrene	5-50	250-5000	5.7	1904	\$	1160	<12	2053	<5	1583	<50	3249	\$	1671
Caffeine	5	175-5000	16.2	QN	34.3	QN	85 800	>5000	27.1	<175	145 000	>5000	75.3	308
Glyphosate	5000	75-4000	<50 000	<75	<5000	<75	0066	>4000	<5000	76	<5000	167	<5000	86
Microcystin	140–200	150-5000	<140	<150	<140	<150	<200	<150	<200	<150	<200	<150	<200	<150
Sulfamethaxazole	2	25-1000	<2	36	35.3	75	946	1112	10.9	33	1500	>1000	27	82
Sulfamethazine	5	50-5000	<5	<50	ŝ	75	<5	<50	<5	<50	<5	54	\$	<50
Testosterone	10	8-2000	<10	6	<10	8	<10	1417	<10	8~	46	>2000	<10	80

Table 4. Comparison of analytical results for selected samples between this study and ALS laboratories. ND = not determined. WWTP = wastewater treatment plant; WTP = water treatment

Great Lakes ecosystem. Sulfamethazine and sulfamethoxazole were mostly below the detection limit, but sulfamethoxazole was occasionally measurable at concentrations >1000 ng/L in the summer months by both ELISA and in 3 ALS validation samples. Avermectin and triclosan concentrations were always found to be well above their detection limit, possibly from human and animal wastes, but because neither was included in the ALS validation data, this result remains unconfirmed.

The herbicides 2,4-D and glyphosates were highest in late summer, especially in Ross Creek, which drains both urban and rural land, consistent with their seasonal application. Concentrations of both were lower in the South Saskatchewan River, but only glyphosate was usually detected within the working range of the standards. Microcystins were usually below the detection limit except in late summer at all surface water sites coincident with peak algal growth. The overall trend for all of these analytes is higher concentrations in later summer as shown by caffeine, which is not a compound causing concern but is a good indicator of human activity. The tendency to increase later in the year occurs because stream and river discharge drops rapidly after the spring to early summer freshet leading to higher concentrations, even if inputs were constant. Overall, there was no obvious influence of either urban or rural inputs as measured by upstream and downstream samples in the streams and rivers, supporting the hypothesis that decreasing discharge is mostly responsible for seasonal peak concentrations.


Flood conditions did not strongly affect analyte concentrations, even though creek and especially river discharge increased by >10-fold over a short period. Fieldwork during the actual days of the flood intervals was too dangerous, but sampling was possible within a week of the river crest in both 2013 and 2014. The Ross Creek sewage lift station failed during the 2014 flood event, resulting in the discharge of raw sewage to the river for approximately 3 weeks, but the WWTP itself was unaffected. This event may have been responsible for a coincident spike in the triclosan concentration at the downstream river site. Triclosan did not increase in the downstream Ross Creek sample, but the sampling site is upstream of the lift station. No other analyte concentrations increased, including caffeine, which should also have risen if raw sewage release was responsible. The source of the floodwaters was snowmelt, exacerbated by heavy rainfall in the mountains and foothills where the South Saskatchewan River tributaries originate. Heavy flooding occurred in Calgary and some in Lethbridge, but these urban centers are 150 to 300 km upstream of the study area. If any unusual input was caused by flooding in their catchment areas, it was obscured by dilution or lost to abiotic and biotic activity in the river.

Other studies have typically reported concentrations of pharmaceutical compounds in surface waters, groundwater, and partially treated water to be <100 ng/L (median concentrations are commonly used) and <50 ng/L in treated water (WHO 2012). Although this is generally true for most prescription drugs, the range in concentrations for other trace organic compounds of concern is much larger. A literature survey revealed results often below 1 µg/L or below methodological detection limits, but others were high enough to be reported in milligrams per liter, especially microcystins and caffeine (Table 4). Comparison is difficult because of differing analytical methodology, statistical analyses, and means of reporting data, but the data presented here are broadly consistent with other studies and tend to be at the low end of the ranges reported in the literature.

Drinking water is only one potential route of exposure according to Stanford et al. (2010) in their investigation of the relative exposure of estrogenic compounds from different sources. Animal wastes can contain trace organic compounds, particularly antibiotics and herbicides. Kruger et al. (2013) reported that glyphosate concentrations in the urine of Danish cows ranged from 10 to 100 µg/L and noted that genetically modified food is probably exposed to glyphosate. Mortl et al. (2013) reported that agricultural use influences glyphosate occurrence in Hungarian waters. This problem may be reduced with pharmaceutical and personal care products in wastewater used to irrigate vegetables; Wu et al. (2014) found that the annual exposure of humans consuming salad, root vegetables, and cabbage was only 3.7 µg per capita in California. Trost et al. (2013) obtained similar results using the same methodology as our current study for sulfamethazine, sulfamethoxazole, and 17β -estradiol applied to bare soil, corn, hay, and prairie plots in Minnesota. Kromrey (2009) concluded that the treated effluents from both the Lethbridge and Medicine Hat wastewater treatment plants have the potential to alter the reproductive success of fathead minnows (*Pimephales* promelas) in the South Saskatchewan River based on laboratory studies and the data of Sosiak and Hebben (2005), but effluent concentrations of nonylphenol ethoxylates (measured as alkylphenols in the current study) seem to have been much higher in 2005.

Influence of wastewater

Data from Environment Canada (2015) and the City of Medicine Hat from June 2012 to December 2013 show that <2% of the discharge in the South Saskatchewan River below Medicine Hat was treated effluent (0.02–0.34%) or tributary water (0.1–1.3%) during this period (Fig. 2). The discharge of treated effluent is fairly constant, but the flow in the river and tributaries both vary by about an order

Figure 2. Composition of river water based on monthly discharge downstream of Medicine Hat, Alberta, from June 2012 to December 2013.

of magnitude from winter low flow to spring runoff. On a volume basis, the influence of Medicine Hat's treated effluent and the tributaries is therefore notably small, even when river flow is low. Seasonal rainfall events could alter these proportions, but no large rainstorms coincided with sampling dates.

The highest concentrations of all analytes were found in raw sewage, but the median levels of ethinylestradiol, 2,4-D, microcystins, PBDE, and sulfamethazine were below the lower detection limit of the ELISA analysis (i.e., below the concentration of the lowest standard). Treated wastewater contained lower concentrations of analytes than raw sewage, and the amount of reduction varied from 22% to 99% (Table 5) based on the mean values from 11 to 14 samples taken over a 3-year period. The removal rates for ethinylestradiol, PBDE, and sulfamethazine are not meaningful because their concentration in the raw wastewater was so low. Generally, the rate of removal was highest for hormones, caffeine, alkylphenol, triclosan, and glyphosate and lowest for 2,4-D, benzo(a)pyrene, and antibiotics. These findings are consistent with those reported by Williams et al. (2014) who summarized the effectiveness of various methods of wastewater treatment for a variety of trace organic compounds.

Analysis of the 6 duplicate samples by GC/MS revealed a wide variety of compounds in the following categories; polycyclic aromatic hydrocarbons, herbicides, pesticides, pharmaceuticals and personal care products, organic parameters, and miscellaneous substances including hormones, but the great majority of analytes were present below their detection limits. A number of drugs occurred in raw wastewater at concentrations <1 μ g/L, but others were present in higher concentrations (Table 6). Alkylphenols, testosterone, and estrogens were removed at high rates (estimated 91–97%) by the Medicine Hat WWTP. The reduction in steroid hormones and endocrine disrupting compounds possibly resulted from UV treatment, but the data are insufficient to reach a firm conclusion. The effect of pesticides in irrigation canals may also be significant but would occur upstream of Medicine Hat. A chronic toxicity study with *Daphnia magna*, an important zooplankton in aquatic environments, showed that the concentrations of testosterone in Medicine Hat's treated wastewater are far below threshold levels that reduce fecundity and fertility in these crustaceans (Barbosa et al. 2008).

A potential issue arises with exposure of soil and aquatic microorganisms to antibiotics in treated effluent. The World Health Organization prepared a report summarizing the issue and gaps in knowledge (WHO 2014) for all aspects of antimicrobial resistance, of which water is only a small part. Treating the final effluent by UV irradiation to reduce the microbial population in wastewater before discharging to the lagoons is beneficial (Williams et al. 2014). The results of our current study suggest that the contribution of the WWTP in Medicine Hat to the South Saskatchewan River is small, but few biotic data are available to assess the potential impact.

Guidelines

Guidelines for safe water quality concentrations of most trace organic compounds of interest are generally lacking. Separate guidelines for drinking water, wastewater effluent, agricultural use (irrigation and livestock), recreational use, and aquatic life (both freshwater and marine) would Downloaded by [24.146.27.18] at 06:28 15 September 2017

Table 5. Comparison of data found in this study to literature values. All results are median values in (ng/L) unless otherwise indicated. BDL – below detection limit. ML – multiple locations. Rivers

Sosiak and Hebben (2005), Chen et al. (2006) Sosiak and Hebben (2005), Chen et al. (2006) Environment Canada (2013) Environment Canada (2013) Environment Canada (2013) Sosiak and Hebben (2005) /idal-Dorsch et al. (2012) /idal-Dorsch et al. (2012) Williams et al. (2003) Williams et al. (2003) Kolpin et al. (2002) Blair et al. (2013) Mortl et al. (2013) Gasperi et al. (2009) Shelver et al. (2008) Kolpin et al. (2002) Reference Sodre et al. (2010) Stuart et al. (2010) Jen Heever (2006) Jen Heever (2006) Sodre et al. (2010) Sodre et al. (2010) Sodre et al. (2010) Nang et al. (2011) Chen et al. (2006) Chen et al. (2006) Guan et al. (2009) Chen et al. (2006) Blair et al. (2013) Blair et al. (2013) 3lair et al. (2013) Reif et al. (2012) Pal et al. (2010); ²al et al. (2010) Pal et al. (2010) ²helan (2012) **This study** ^{-his study} **Fhis study Fhis study** Source ibid ibid 5-200 000 8-20 000 Triclosan Caffeine 5-1000 5-100 4500 6-517 962 872 670 405 74 67 189 466 160 64 120 71 790 140 5 495 Ś Benzo(a)pyrene Testosterone 1.3-30 10 7 BDL 116 6.4 1278 1479 10 BDL BDL 6.4 270 4 6.2–1172 Sulfamethazine Avermectins 519 363 415 931 886 29 1200 20-2800 20-2000 20-2000 101 101 2-210 2263 1655 Sulfamethoxazole 650, 98-3440 Alkylphenol 2820-7680 21 BDL BDL, 377 427, 72 255 2800 157 1110 37 313 80 80 52.1 BDL 220 BDL 200 15 2,4-D PBDE BDL 1022 8.5 21.5 43.5 in Alberta unless stated otherwise. u/s – upstream. d/s – downstream. 631 31 BDL Microcystins 17αEthiny estradiol 0.6-5.6 1.5-4.7 0.4-3.4 8.5 2.6 BDL 4 BDL 7.3 69 Ś 62 17a Estrogens Glyphosate 6.4–12.6 3 11 BDL 120-1000 BDL BDL BDL BDL .4-1.7 0.43 433 25 7.4 26 30 1.2 79 S. Saskatchewan R. d/s Medicine Hat S. Saskatchewan R. u/s Medicine Hat Calgary Bonnybrook WWTP treated Rivers Nene and Lea, UK, d/s WWTP Calgary Bonnybrook WWTP treated S. Sasktchewan R. u/s Medicine Hat S. Saskatewan R. d/s Medicine Hat Hungarian agricultural streams Calgary Fish Cr. WWTP treated Calgary Fish Cr. WWTP treated Assiniboine R., Saskatchewan UK groundwaters (max conc) North Dakota WWTP treated Medicine Hat WWTP treated Medicine Hat WWTP treated Medicine Hat WWTP treated Medicine Hat WWTP treated Milwaukee WWTP treated Lethbridge WWTP treated Lethbridge WWTP treated Milwaukee WWTP treated Surface waters in France Pearl R. estuary, China Carrot R., Saskatchewan ML - raw surface water Pennsylvania streams Elbow R. u/s Calgary ML - WWTP treated ML - WWTP treated ML - drinking water Bow R. u/s Calgary Bow R. d/s Calgary ML - WWTP treated ML - WWTP treated ML - WWTP treated ML - surface water **UK WWTP treated** Red R., Manitoba Ontario streams ML - WWTP raw Alberta streams Alberta streams Lake Michigan Lake Michigan Water Source Liao R., China Water Source US streams US streams

291

INLAND WATERS

		17aEthinyl						
Water Source	17α Estrogens	estradio	2,4-D	Alkylphenol	Avermectins	Benzo(a)pyrene	Caffeine	Reference
Hungarian non-agricultural streams	35-64							Mortl et al. (2013)
Red R., North Dakota					60			Shelver et al. (2008)
Llobregat River, Spain					1100			Ginebreda et al. (2009)
Bow R. u/s of Calgary				2–21	BDL			Chen et al. (2006)
Bow R. d/s of Calgary				48	BDL			Chen et al. (2006)
Elbow R. u/s of Calgary				4.4	BDL			Chen et al. (2006)
ML - surface water					7-2000	4.3–16		Pal et al. (2010)
UK groundwaters (max conc)							2110	Stuart et al. (2010)
Arkansas streams					361			Haggard et al. (2006)
ML - surface water					0.5–7.3			Vidal-Dorsch et al. (2012)
Pennsylvania streams					5-146			Reif et al. (2012)
US lakes with algal blooms		1000						Davis et al. (2009)
Lake Erie, Ontario		0.4-21 000						Rinto-Kanto et al. (2009)
California lakes		100-500 000						Backer et al. (2009)
Multiple Canadian lakes		150-2 153 000						Orihel et al. (2012)
Pearl R. estuary, China			0.1-65					Guan et al. (2009)
Liao R., China							81.3	Wang et al. (2011)
Alberta streams				2–11				Den Heever (2006)
Ontario streams				0.3-408				Den Heever (2006)

Table 6. Mean removal efficiency of Medicine Hat's wastewater
treatment plant. Concentrations of analytes are in (ng/L).

Analyte	Raw sewage	Treated sewage	% Reduction
Testosterone	1788	11	99
Alkylphenol	27 817	779	97
Caffeine	16 799	1108	93
PBDE	14	1	93
Estrogens	545	48	91
Triclosan	6139	677	89
Glyphosate	2464	554	78
Microcystins	143	65	55
Sulfamethazine	32	21	34
2,4-D	1629	1129	31
Benzo(a)pyrene	1890	1354	28
Ethinylestradiol	8	6	25
Avermectins	3006	2337	22
Sulfamethoxazole	1175	914	22

Table 7. Drugs found in raw wastewater samples analyzed by ALS Laboratories. Concentrations in μ g/L.

Drug	6 Aug 13	30 Dec 13	Use
Acetaminophen	71.8	73.7	Analgesic
Atenolol	2.02	0.345	Angina, hypertension
Benzoylecgonine		1.13	Main metabolite of cocaine
Ciprofloxacin	6.96	7.51	Antibiotic
Codeine	3.54	2.76	Analgesic
Cotinine	2.36	0.745	Nicotine metabolite, tobacco
Dehydronifedipine	2.36	0.021	Metabolite of nifedipine, Angina, hypertension
Diclofenac	3.47	4.26	Anti-inflammatory, arthritis
1,7 dimethylxanthine		21.2	Metabolite of caffeine
Diphenhydramine	0.48	1.33	Antihistamine
Furosemide	0.492	1.15	Diuretic, cardiac failure, edema
Hydrochlorothiazide	3.03	6.03	Diuretic, hypertension
Ibuprofen	14.1	18.5	Analgesic, anti-inflam- matory
Metformin	85.5	91.8	Type 2 diabetes
Naproxen	10.7	13.0	Anti-inflammatory, arthritis
Norfloxacin		1.96	Antibiotic
Ofloxacin		1.42	Antibiotic
Ranitidine	1.22	2.02	Inhibits stomach acid, ulcers

all be useful. Issues surrounding guidelines include toxicity, antimicrobial resistance, and reproductive effects in aquatic organisms, humans, and animals. Anderson et al. (2012) provide an excellent review used to develop a monitoring strategy for the State of California. Other useful government sources of information are the Guidelines for Canadian Drinking Water Quality (Health Canada 2012), the World Health Organization (2012), and the Canadian Chemicals Management Plan (www.chemicalsubstances. gc.ca). A detailed analysis of the development of guidelines for chemicals of emerging concern is beyond the scope of this study, but some guidelines exist for the analytes measured (Tables 7 and 8). More data are available for other compounds, and provisional guidelines for a wide variety of trace organic compounds of concern

Table 5. (Continued).

		Australia						
Chemical	Recycled water ^a	Health ^b	Drinking water ^c	Canada ^d	WHO ^e	USf	US ^g	Europe ^h
2,4-D	30	30	0.1	100/4	30	100	70	0.1
Glyphosate	-	1000	10	280	-	-	700	0.1
Benzo(a)pyrene	0.01	0.01	_	0.01	0.7	0.0038	0.2	0.01
Microcystins	-	1.3	_	1.5	1	_	_	_
Sulfamethoxazole	35	-	35	-	-	_	_	_
Ethinylestradiol	0.0015	-	0.0015	-	-	_	_	_
Estriol	0.05	-	0.05	-	-	-	_	_
Estrone	0.03	-	0.03	-	-	-	_	_
Testosterone	7	-	7	-	-	-	_	_
Sulfamethazine	35	-	35	-	-	-	_	_
Estradiol	0.175	-	0.175	-	-	-	_	_
4-Nonylphenol	500	_	500	_	_	_	_	_
Triclosan	0.35	_	0.35	_	_	_	_	_
Caffeine	0.35	_	0.35	-	-	-	_	_

Table 8. All currently available international water guidelines (μ g/L) for the compounds analyzed in this study. Includes guidelines from Australia, Canada, United States, Europe, and the World Health Organization.

^aguidelines for water recycling (EPHC, NHMRC, NRMMC 2008).

^bbased on human health concerns; levels in drinking water should not exceed this (NHMRC and NRMMC 2011).

^cbased on the analytical limit of determination; if pesticide is detected at or above this value the source should be identified and action should be taken to prevent further contamination (NHMRC and NRMMC 2004).

^dguidelines for drinking water quality based on health; listed as a maximum acceptable concentration (MAC; Health Canada 2012).

^eguidelines for chemicals that are of health significance in drinking water (WHO 2012).

frecommended surface water quality criteria for the protection of human health in regards to the consumption of water and organism (USEPA 2013a).

⁹the highest level of a contaminant allowed in drinking water; listed as a maximum contaminant level (MCL; USEPA 2013b).

^hguidelines for water quality intended for human consumption (EU 1998).

in drinking water have been published by Schriks et al. (2010) or may be found in the publications of the World Health Organization (WHO 2011, 2012; WHO/UNEP 2013). Improvements in analytical methodology will make guideline development more feasible but cost will continue to be an issue. The methodology employed by our current project combined with the assumption that representative compounds make useful monitoring tools can aid this process.

The top 3 research priorities identified by a survey of 535 environmental scientists from 57 countries were to (1)determine the effects of long-term exposure to low concentrations of pharmaceuticals and personal care product mixtures on non-target organisms, (2) develop effluent treatment methods to reduce the effects of pharmaceutical and personal care products in the environment while not increasing the toxicity of whole effluents, and (3) assess the environmental risks of metabolites and environmental transformation products of these compounds (Rudd et al. 2014). The safe disposal of pharmaceutical and personal care products and other organic chemicals is an issue at all levels of government that affects the transport of chemicals into the environment. Currently, consistent programs are lacking for pick-up and disposal of medications. Public awareness and education can discourage disposal of drugs in the garbage or down the toilet (NAPRA 2009). Further environmental contamination would benefit from the implementation of a widespread, uniform program for the return and disposal of expired, discontinued, and unused drugs.

Methods for analysis

Although GC/MS has high separation efficiency, high speed, and lower matrix effect, it often requires derivatization and is applicable only to volatile agents (Fang et al. 2016). LC/MS does not require derivatization and has good sensitivity, specificity, and versatility but is complex, requires high sample and solvent volumes, is time-consuming, and is subject to matrix effects (Fang et al. 2016, Guo et al. 2017). In contrast to LC/GC/MS methods, the ELISA is rapid, simple, and cost effective (Gan and Patel 2013, Fang et al. 2016). In addition, ELISA tends to have a higher sensitivity and can analyze large sets of samples (Fang et al. 2016). A limitation of this method is the potential overestimation of the result (Gan and Patel 2013). One way this can occur is through cross-reactivity with closely related molecules (Gan and Patel 2013, Fang et al. 2016). Another issue is that in a competitive ELISA the absorbance-concentration calibration curve is only linear within a range limited by the competition of the analyte and the enzyme-conjugate for binding sites on the monoclonal antibody attached to the well. When little or no analyte is present, the color development is intense because a large amount of enzyme-conjugate remains bound to the wells to react with the chromogenic substrate. The opposite is true when the concentration is high; high concentrations may be underestimated because little or no enzyme-conjugate remains in the wells after washing. The enzymatic color reaction is also time-dependent, and prolonged incubation may overemphasize results (Gan and Patel

2013). Ideally, no single analytical method should be relied on, and the best use for ELISA may be as a screening tool to indicate problems requiring further investigation using more costly methods.

Conclusions

- The ELISA-based kits were an economical and accurate alternative to classical analytical methods with the following limitations:
 - not all kits include internal standards,
 - cross-reactions with related compounds may occur leading to overestimation of results, and
 - it is assumed that a select group of representative chemicals will be an effective monitoring tool for trace organic compounds.
- Wastewater treatment at Medicine Hat removes indicator analytes with efficiencies ranging from 22% to 99%.
- Less than 2% of the discharge in the South Saskatchewan River below Medicine Hat was treated effluent (0.02–0.34%) or tributary water (0.1–1.3%) in the study period.
- Polybrominated diphenyl ethers and ethinylestradiol concentrations were usually at or below the limit of detection.
- All other analytes were found at concentrations consistent with those reported in other studies for surface water and wastewater.
- The herbicides 2,4-D and glyphosate generally increased in concentration over the summer in the wastewater and tributary samples, and on one occasion in the river, consistent with the seasonal pattern of their use.
- Microcystin concentrations were highest in the summer.
- Avermectins, benzo(a)pyrene, alkylphenol, and caffeine concentrations tended to increase under low flow conditions.
- Analyte concentrations did not increase or decrease consistently in either the tributaries or the South Saskatchewan River after passing through Medicine Hat.
- Flood conditions in the South Saskatchewan River did not cause any major changes in the concentration of the indicator analytes.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was funded by the City of Medicine Hat, Connacher Oil and Gas through funds granted for research to Medicine Hat College, the South East Alberta Watershed Alliance and by Hyperion Research Ltd.

References

- Alberta Government. 2014. South Saskatchewan regional plan 2014–2024.
- AMEC. 2009. South Saskatchewan river basin in Alberta: water supply study. Lethbridge (AB): Alberta Agriculture and Rural Development.
- Anderson PD, Denslow ND, Drewes JE, Olivieri AW, Schlenk D, Scott GI, Taylor SA. 2012. Monitoring strategies for chemicals of emerging concern (CECs) in California's aquatic ecosystems. Technical Report 692. Costa Mesa (CA): Southern California Coastal Water Research Project.
- Backer LC, McNeel SV, Barber T, Kirkpatrick B, Williams C, Irvin M, Zhou Y, Johnson TB, Nierenberg K, Aubel M, et al. 2009. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon. 55:909–921.
- Barbosa IR, Nogueira AJA, Soares AMVM. 2008. Acute and chronic effects of testosterone and 4-hydroxy and rostenedione to the crustacean *Daphnia magna*. Ecotox Environ Safe. 71:757–764.
- Blair BD, Crago JP, Hedman CJ, Klaper RD. 2013. Pharmaceuticals and personal care products found in the Great Lakes above concentrations of environmental concern. Chemosphere. 93:2116–2123.
- Chen M, Ohman K, Metcalfe C, Ikonomou MG, Amatya PL, Wilson J. 2006. Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada. Water Qual Res J Can. 41:351–364.
- Chung K, Yang C-C, Wu M-L, Deng J-F, Tsai W-J. 1999. Agricultural avermectins: an uncommon but potentially fatal cause of pesticide poisoning. Ann Emerg Med. 34:51–57.
- Davis TW, Berry DL, Boyer GL, Gobler CJ. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of *Microcystis* during cyanobacteria bloom. Harmful Algae. 8:715–725.
- Den Heever J [Internet]. 2006. Livestock pharmaceuticals in agricultural streams – analytical method and preliminary results. Presented at the Western Canada Trace Organic Workshop, 2006 Apr 24; [cited 2016 Mar 8]. Available from: www.traceorganic.com/2006/WCTOW%20program.doc
- Dohnal V, Dvorak V, Malir F, Ostry V, Roubal T. 2013. A comparison of ELISA and HPLC methods for determination of ochratoxin A in human blood serum in the Czech. Food Chem Toxicol. 62:427–431.
- Dornbos P, Chernyak S, Rutkiewicz J, Cooley T, Strom S, Batterman S, Basu N. 2015. Hepatic polybrominated diphenyl ether (PBDE) levels in Wisconsin river otters (*Lontra canadensis*) and Michigan bald eagles (*Haliaeetus leucocephalus*). J Great Lakes Res. 41:222–227.
- El-Alfy AT, Schlenk D. 2002. Effect of 17β-estradiol and testosterone on the expression of Flavin-containing monooxygenase and the toxicity of aldicarb to Japanese Medaka, *Oryzias latipes*. Toxicol Rev. 68:381–388.

- Environment Canada [Internet]. 2013. Presence of pesticides in the Nelson River watershed between 2006 and 2011; [cited 2016 Mar 8]. Available from https://ec.gc.ca/eaudoucefreshwater/default.asp?lang=En&n=EACFCA96-1
- Environment Canada [Internet]. 2015. Hydrometric data; [cited 2016 Mar 8]. Available from: https://wateroffice.ec.gc.ca
- [EPHC, NHMRC, NRMMC] Environment Protection and Heritage Council, National Health and Medical Research Council, Natural Resource Management Ministerial Council. 2008. Australian guidelines for water recycling: augmentation of drinking water supplies. Canberra, Australia.
- [EU] European Union. 1998. Council directive on the quality of water intended for human consumption. CELEX-EUR Official J. L330:32–54.
- Fang TY, Praveena SM, deBurbure C, Aris AZ, Norkhadijah S, Ismail S, Rasdi I. 2016. Analytical techniques for steroid estrogens in water samples – a review. Chemosphere. 165:358–368.
- Fauzan T, Omar T, Ahmad A, Aris AZ, Yusoff FM. 2016. Endocrine disrupting compounds (EDCs) in environmental matrices: review of analytical strategies for pharmaceuticals, estrogenic hormones, and alkylphenol compounds. Trac-Trend Anal Chem. 85:241–259.
- Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB, Chamberlin AR, Towers NA, Dietrich DR. 2001. Congenerindependent immunoassay for microcystsins and nodularins. Environ Sci Technol. 35:4849–4856.
- Gan SD, Patel KR. 2013. Enzyme immunoassay and enzymelinked immunosorbent assay. J Invest Dermatol. 133:1–3.
- Gasperi J, Garnaud S, Rocher V, Moilleron R. 2009. Priority pollutants in surface waters and settleable particles within a densely urbanised area: case study of Paris (France). Sci Total Environ. 407:2900–2908.
- Ginebreda A, Munoz I, Lopez de Alda M, Brix R, Lopez-Doval J, Barcelo D. 2009. Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int. 36:153–162.
- Guan Y-F, Sojinu OSS, Li S-M, Zeng EY. 2009. Fate of polybrominated diphenyl ethers in the environment of the Pearl River estuary, South China. Environ Pollut. 157:2166–2172.
- Guo YC, Lee KA, Yates RS, Liang S, Rochelle PA. 2017. Analysis of microcystins in drinking water by LISA and LC/MS/MS. J Am Water Works Assoc. 109:13–24.
- Haggard BE, Galloway JM, Green WR, Meyer MT. 2006. Pharmaceuticals and other organic chemicals in selected north-central and northwestern Arkansas streams. J Environ Qual. 35:1078–1087.
- [HC-SC] Health Canada. 2012. Guidelines for Canadian drinking water quality – summary table. Water, Air and Climate Change Bureau, Healthy Environments and Consumer Safety Branch. Ottawa (ON): Health Canada.
- Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT. 2002. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol. 36:1202–1211.
- Kromrey N. 2009. The effects of wastewater treatment plant effluent and agricultural runoff on the reproductive systems of fathead minnow (*Pimephales promelas*) [masters thesis]. Lethbridge (AB): University of Lethbridge.

- Kruger M, Schrodl W, Neuhaus J, Ali Shehata A. 2013. Field investigations of glyphosate in urine of Danish dairy cows. J Environ Anal Toxicol. 3:1–7.
- Lambert MR, Skelly DK. 2016. Diverse sources for endocrine disruption in the wild. Endocr Disrup. 4:1–5.
- Mortl M, Nemeth G, Jurascsek J, Darvas B, Kamp L, Rubio F, Szekacs A. 2013. Determination of glyphosate residues in Hungarian water samples by immunoassay. Microchem J. 107:143–151.
- [NAPRA] National Association of Pharmacy Regulatory Authorities [Internet]. 2009. Resources for pharmacy operators; [cited 2013 Aug 19]. Available from: http//napra. ca/pages/Practice_Resources/resources_for_pharmacy_ operators.aspx?id=2128
- [NHMRC, NRMMC] National Health and Medical Research Council, Natural Resource Management Ministerial Council. 2004. Australian drinking water guidelines. Canberra, Australia.
- [NHMRC, NRMMC] National Health and Medical Research Council, Natural Resource Management Ministerial Council. 2011. Australian drinking water guidelines paper 6, national water quality management strategy. Canberra, Australia.
- [NIH, HHS] National Institutes of Health, US Department of Health and Human Services. 2010. Endocrine disruptors. Available from: https://www.niehs.nih.gov/health/materials/ endocrine_disruptors_508.pdf
- Orihel DM, Bird DF, Brylinsky M, Chen H, Donald DB, Huang DY, Giani A, Kinniburgh D, Kling H, Kotak BG, et al. 2012. High microcystin concentrations occur only at low nitrogen-to-phosphorus ratios in nutrient-rich Canadian Lakes. Can J Fish Aquat Sci. 69:1–6.
- Pal A, Gin KY-H, Lin AY-C, Reinhard M. 2010. Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ. 408:6062–6069.
- Phelan C. 2012. Pesticides in Alberta's agricultural watersheds: a synthesis. Edmonton: Alberta Agriculture and Rural Development.
- Reif AG, Crawford JK, Loper CA, Proctor A, Manning R, Titler R. 2012. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006–2009. US Geological Survey Scientific Investigations Report 2012–5106. 99 pp.
- Rinto-Kanto JM, Konopko EA, DeBruyn JM, Bourbonniere RA, Boyer GL, Wilhelm SW. 2009. Lake Erie *Microcystis*: relationship between microcystin production, dynamics of genotypes and environmental parameters in a large lake. Harmful Algae. 8:665–673.
- Rudd MA, Ankley GT, Boxall AB, Brooks BW. 2014. International scientists' priorities for research on pharmaceutical and personal care products in the environment. Integr Environ Assess Manag. 10:576–587.
- Schriks M, Heringa MB, van der Kooi ME, de Voogt P, van Wezel AP. 2010. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 44:461–476.
- Shelver WL, Shappell NW, Franek M, Rubio FR. 2008. ELISA for sulfonamides and its application for screening water contamination. J Agric Food Chem. 56:6609–6615.
- Snyder SA, Vanderford BJ, Drewes J, Dickenson E, Snyder EM, Bruce GB, Pleus RC. 2008. State of knowledge of endocrine disruptors and pharmaceuticals in drinking water. Denver (CO): American Water Works Research Foundation; 268 pp.

- Sodre FF, Locatelli MAF, Jardim WF. 2010. Occurrence of emerging contaminants in Brazilian drinking waters: a sewage-to-tap issue. Water Air Soil Pollut. 206:57–67.
- Sosiak A, Hebben T. 2005. A preliminary survey of pharmaceuticals and endocrine disrupting compounds in treated municipal wastewaters and receiving rivers of Alberta. Edmonton. Alberta Environment Publication Number T/773.
- Stanford BD, Snyder SA, Trenholm RA, Holady JC, Vanderford BJ. 2010. Estrogenic activity of US drinking waters: a relative exposure comparison. J Am Water Works Assoc. 102:55–65.
- Stuart M, Lapworth D, Crane E, Hart A. 2010. Review of risk from potential emerging contaminants in UK groundwater. Sci Total Environ. 416:1–21.
- Trost JJ, Kiesling RL, Erickson ML, Rose PJ, Elliott SM. 2013. Land-cover effects on the fate and transport of surfaceapplied antibiotics and 17-beta-estradiol on a sandy outwash plain, Anoka County, Minnesota, 2008–09. US Geological Survey Scientific Investigations Report 2013–5202.
- Tyler CR, Filby AL, Bickley LK, Cumming RI, Gibson R, Labadie P, Katsu Y, Liney KE, Shears JA, Silva-Castro V, et al. 2009. Environmental health impacts of equine estrogens derived from hormone replacement therapy. Environ Sci Technol. 43:3897–3904.
- [USEPA] United States Environmental Protection Agency [Internet]. 2013a. National recommended water quality criteria; [cited 2016 Mar 8]. Available from: http://water.epa. gov/scitech/swguidance/standards/criteria/current/index.cfm
- [USEPA] United States Environmental Protection Agency [Internet]. 2013b. National primary drinking water regulations; [cited 2016 Mar 8]. Available from: http://water. epa.gov/drink/contaminants/index.cfm#one
- [USFDA] United States Food and Drug Administration. [Internet]. 2010. Triclosan: what consumers should know; [cited 8 Mar 2016]. Available from: www.fda.gov/ ForConsumers/ConsumerUpdates

- Vidal-Dorsch DE, Bay SM, Maruya K, Snyder SA, Trenholm RA, Vanderford BJ. 2012. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water. Environ Toxicol Chem. 31:2674–2682.
- Wang L, Ying G-G, Zhao J-L, Liu S, Yang B, Zhou L-J, Tao R, Su H-C. 2011. Assessing estrogenic activity in surface water and sediment of the Liao River system in northeast China using combined chemical and biological tools. Environ Pollut. 159:148–156.
- Williams G, Howe E, Owens-Bennett E, Hokanson D, Trussell R. 2014. Source water safety investigating unregulated synthetic organic chemicals. Opflow, Am Water Works Assoc. 40:10–13.
- Williams RJ, Johnson AC, Smith JJL, Kanda R. 2003. Steroid estrogens profiles along river stretches arising from sewage treatment works discharges. Environ Sci Technol. 37:1744– 1750.
- [WHO] World Health Organizations. 2011. Guidelines for drinking-water quality. 4th ed. Geneva: WHO Press.
- [WHO] World Health Organization. 2012. Pharmaceuticals in drinking-water. Geneva: WHO Press.
- [WHO] World Health Organization. 2014. Antimicrobial resistance global report on surveillance. Geneva: WHO Press.
- [WHO/UNEP] World Health Organization/United Nations Environmental Programme. 2013. State of the science of endocrine disrupting chemicals 2012. In: Bergman A, Heindel JJ, Jobling S, Kidd KA, Zoeller RT, editors. Geneva: WHO Press.
- Wu X, Conkle JL, Ernst F, Gan J. 2014. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions. Environ Sci Technol. 48:11286–11293.
- Wunderlin P, Dominguez D, Scharer M. 2014. Chemical and ecotoxicological characterization of wastewater treatment plant effluents. Environ Toxicol Chem. 33:2410–2411.